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Weyl’s Attempt to Unify Gravitation and
Electromagnetism

Weyl to Einstein (March 1918):

“These days I succeeded, as I believe, to derive

electricity and gravitation from a common source

. . . .”
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Weyl’s Generalization of Riemannian
Geometry

Weyl’s starting point was purely mathematical:

“But in Riemannian geometry described above there is contained a

last element of geometry “at a distance” (ferngeometrisches Element)

— with no good reason, as far as I can see; it is due only to the

accidental development of Riemannian geometry from Euclidean ge-

ometry. The metric allows the two magnitudes of two vectors to be

compared, not only at the same point, but at any arbitrarily separated

points. A true infinitesimal geometry should, however, recognize only a

principle for transferring the magnitude of a vector to an infinitesimally

close point and then, on transfer to an arbitrary distant point, the inte-

grability of the magnitude of a vector is no more to be expected than

the integrability of its direction.”
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Weyl’s physical speculation:

“On the removal of this inconsistency there appears a geometry that,

surprisingly, when applied to the world, explains not only the gravita-

tional phenomena but also the electrical. According to the resultant

theory both spring from the same source, indeed in general one cannot

separate gravitation and electromagnetism in a unique manner. In this

theory all physical quantities have a world geometrical meaning; the

action appears from the beginning as a pure number. It leads to an

essentially unique universal law; it even allows us to understand in a

certain sense why the world is four-dimensional.”
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Weyl-Geometry:

• Spacetime manifold M is equipped with a conformal structure [g]:

g1 ∼ g2 ⇔ g1(x) = e2λ(x)g2(x);

same null cones. (Lengths can only be compared at one and the

same world point.)

• M has (torsion-free) linear connection → parallel transport, co-

variant derivative ∇.

• Linear connection respects conformal structure:

∇g = −2A⊗ g (∇αgµν = −2Aαgµν), g ∈ [g], (1)

where the map A : [g] → Λ1(M) satisfies

A(e2λg) = A(g)− dλ. (2)
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A(g)is the gauge potential belonging to g, and (2) is what Weyl

called a gauge transformation. In bundle theoretical language: A

Weyl connection is a torsion-free connection of the conformal prin-

ciple bundle (Weyl-bundle). [→ (1), (2)]

Existence of covariant Weyl derivatives

Generalize the well-known Koszul treatment of the Levi-Civita con-

nection. In particular we generalize the Koszul formula to

g(∇ZY,X) = g(∇LC
Z Y,X)+[−A(X)g(Y, Z)+A(Y )g(Z,X)+A(Z)g(X, Y )].

Defines ∇X in terms of g and A.

Derivation. Explicitly a Weyl connection satisfies

(∇Xg)(Y, Z) = Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ) = −2A(X)g(Y, Z).
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Since the torsion vanishes, i.e., ∇XY −∇YX − [X,Y ] = 0

Xg(Y,Z) = g(∇YX,Z) + g([X,Y ], Z) + g(Y,∇XZ) + 2A(X)g(Y, Z).

Result follows after cyclic permutations.

With routine calculations one verifies that the generalized Koszul

formula defines a covariant derivative with vanishing torsion, and

moreover it satisfies defining property.

Local formula. Chose X = ∂i, Y = ∂j, , Z = ∂k of local coordinates:

〈∇∂i∂j, ∂k〉 =
1

2
(−gji,k + gik,j + gkj,i)) + (−Aigjk +Ajgki+Akgij).

Has to perform in the Christoffel symbols of the Levi-Civita con-

nection the substitution

gij,k → gij,k − 2Akgij.
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Non-integrable scale factor (gauge factor)

Ratio of lengths in q and p (measured with g ∈ [g]) depends in

general on the connecting path γ:

l(q) = exp

(

−
∫

γ
A

)

l(p).

This equation holds for all g ∈ [g]! Transport of length path-independent

⇔

F = dA = 0 (Fµν = ∂µAν − ∂νAµ = 0).

[ Weyl geometry and the Weyl-Cartan Theorem ?]
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Consider G-structures on a manifolds M : Reductions of the bundle

of linear frames L(M) to a subgroup G ⊂ GL(n;R. For G = O(n), a

G-structure is equivalent to a Riemannian metric on M .

The Weyl-Cartan Theorem states that for a closed subgroup G ⊂
GL(n;R, n ≥ 3 the following two conditions are equivalent:

(1) G is the subgroup of all matrices which preserve a certain non-

degenerate quadratic form of any signature.

(2) For every n-dimensional manifold M and every reduced sub-

bundle P of L(M) with group G, there is a unique torsion-free

connection in P .

Remark: Weyl-connections are not counter examples!
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Change of calibration (gauge transformation)

∇ has absolute meaning. Passing to another calibration with metric

ḡ, related to g by

ḡ = e2λg,

the potential A will also change to Ā: by definition

∇ḡ = −2Ā⊗ ḡ;

on the other hand:

∇ḡ = ∇(e2λg) = 2dλ⊗ ḡ+ e2λ∇g = 2dλ⊗ ḡ − 2A⊗ ḡ.

Thus

Ā = A− dλ (Āµ = Aµ − ∂µλ).
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Hence: change of calibration of the metric induces a “gauge trans-

formation” for A:

gµν → e2λgµν, Aµ → Aµ − ∂µλ.

Only gauge classes have an absolute meaning.

(The Weyl connection is, however, gauge-invariant;

conceptually clear, can be verified by direct cal-

culation.)
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Electromagnetism and Gravitation

• Weyl assumes that his “purely infinitesimal geometry” describes

the structure of spacetime

−→
• physical laws should satisfy a double-invariance: 1. They must be

invariant with respect to arbitrary smooth coordinate transforma-

tions. 2. They must be gauge invariant.

• Interpretation: gµν = gravitational potential; Aµ = vector po-

tential, Fµν = field strength of electromagnetism.

In the absence of electromagnetic fields (Fµν = 0) the scale factor

exp(− ∫

γ A) for length transport becomes path independent (inte-

grable) and one can find a gauge such that Aµ vanishes for simply

connected spacetime regions. In this special case one is in the same

situation as in GR.
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Action: generally invariant and gauge invariant. In his first paper

Weyl proposes what we call nowadays the Yang-Mills action

S(g,A) = −1

4

∫

Tr(Ω ∧ ∗Ω).

Ω = curvature form, ∗Ω = Hodge dual∗. Note that the latter is

gauge invariant, i.e., independent of the choice of g ∈ [g]. In Weyl’s

geometry the curvature form splits: Ω = Ω̂+F , Ω̂ = ‘metric’ piece.

Correspondingly, the action also splits,

Tr(Ω ∧ ∗Ω) = Tr(Ω̂ ∧ ∗Ω̂) + F ∧ ∗F ;

second term = Maxwell action. Weyl’s theory thus contains formally

all aspects of a non-Abelian gauge theory.

Note: Einstein-Hilbert action is not gauge invariant.

∗The integrand is in local coordinates indeed just the expression
RαβγδR

αβγδ√−gdx0∧ . . .∧dx3 which is used by Weyl (Rαβγδ= the curvature tensor
of the Weyl connection).
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19 year old Wolfgang Pauli analyzes the implications of Weyl’s

action (perihelion motion, light deflection).

Hermann Weyl to Pauli, 10 May, 1919:

“I am extremely pleased to be able to welcome you as a

collaborator. However, it is almost inconceivable to me how

you could possibly have succeeded at so young an age to

get hold of all the means of knowledge and to acquire the

liberty of thought that is needed to assimilate the theory

of relativity.”
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Independent of the precise form of the action Weyl shows that in his

theory gauge invariance implies the conservation of electric charge

in much the same way as general coordinate invariance leads to the

‘conservation’ of energy and momentum. This beautiful connection

pleased him particularly:

“. . . [it] seems to me to be the strongest general argument in

favour of the present theory — insofar as it is permissible to talk

of justification in the context of pure speculation.”

The invariance principles imply five ‘Bianchi type’ identities. Cor-

respondingly, the five ‘conservation laws’ follow in two independent

ways from the coupled field equations and may be “termed the

eliminants” of the latter. These structural connections hold also in

modern gauge theories.
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Einstein’s Objection and Reactions of other Physicists

If the idea of a non-integrable length connection (scale factor) is

correct, then the behavior of clocks would depend on their history;

in clear contradiction with empirical evidence, in particular with the

existence of stable atomic spectra. Einstein therefore concludes:

“ . . . (if) one drops the connection of the ds to the measurement

of distance and time, then relativity looses all its empirical basis.”

Illustration: static situation, only electric field: A = φdt, φ : t-
independent; clock in fixed position, rate l = l0 exp

(

∫ t
0 φdt

′
)

= l0e
tφ;

consider two clocks C1, C2: C2 stays in 2 for time t; (rate of

C2)/(rate of C1) = e−[φ(2)−φ(1)]t → no spectral lines of definite

frequencies.

Einstein:“it is impossible that the theory corresponds to nature.”
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Weyl to Einstein (10. 12. 1918)

“This [insistence] irritates me of course, because experience has proven

that one can rely on your intuition; so unconvincing as your counter-

arguments seem to me, as I have to admit [. . . ]. By the way, you

should not believe that I was driven to introduce the linear differential

form in addition to the quadratic one by physical reasons. I wanted,

just to the contrary, to get rid of this ‘methodological inconsistency

(Inkonsequenz)’ which has been a bone of contention to me already

much earlier. And then, to my surprise, I realized that it looked as if

it might explain electricity. You clap your hands above your head and

shout: But physics is not made this way !”
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London (1927):

“In the face of such elementary experimental evidence, it must have

been an unusually strong metaphysical conviction that prevented Weyl

from abandoning the idea that Nature would have to make use of

the beautiful geometrical possibility that was offered. He stuck to his

conviction and evaded discussion of the above-mentioned contradic-

tions through a rather unclear re-interpretation of the concept of “real

state”, which, however, robbed his theory of its immediate physical

meaning and attraction.”

Quote from a remarkable paper by London in which he suggested

a reinterpretation of Weyl’s principle of gauge invariance within the

new quantum mechanics: The role of the metric is taken over by

the wave function, and the rescaling of the metric has to be replaced

by a phase change of the wave function.
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Further early contributions: Schrödinger (1922), Fock (1926),

Klein (1926). F. London to Schrödinger (1926):

“Do you know a certain Herr Schrödinger who described, in the year

1922, a ‘noteworthy property of quantum orbits’? Do you know this

man? [...] Will you now immediately confess that, like a priest, you

held the truth in your hands and kept it secret? [...].”
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Weyl’s 1929 Classic:
“Electron and Gravitation”

Weyl in 1955 (Selecta):

“Later the quantum-theory introduced the Schrödinger-Dirac potential

ψ of the electron-positron field; it carried with it an experimentally-

based principle of gauge-invariance which guaranteed the conservation

of charge, and connected the ψ with the electromagnetic potentials

Aµ in the same way that my speculative theory had connected the

gravitational potentials gµν with the Aµ, and measured the Aµ in known

atomic, rather than unknown cosmological units. I have no doubt but

that the correct context for the principle of gauge-invariance is here

and not, as I believed in 1918, in the intertwining of electromagnetism

and gravity.”
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The richness and scope of the paper is clearly visible from the fol-

lowing table of contents:

“ Introduction. Relationship of General Relativity to the

quantum-theoretical field equations of the spinning electron:

mass, gauge-invariance, distant-parallelism. Expected modi-

fications of the Dirac theory. -I. Two-component theory: the

wave function ψ has only two components. -§1. Connection

between the transformation of the ψ and the transformation

of a normal tetrad in four-dimensional space. Asymmetry

of past and future, of left and right. -§2. In General Rela-

tivity the metric at a given point is determined by a normal

tetrad. Components of vectors relative to the tetrad and

coordinates. Covariant differentiation of ψ. -§3. Gener-

ally invariant form of the Dirac action, characteristic for the
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wave-field of matter. -§4. The differential conservation law

of energy and momentum and the symmetry of the energy-

momentum tensor as a consequence of the double-invariance

(1) with respect to coordinate transformations (2) with re-

spect to rotation of the tetrad. Momentum and moment

of momentum for matter. -§5. Einstein’s classical theory of

gravitation in the new analytic formulation. Gravitational en-

ergy. -§6. The electromagnetic field. From the arbitrariness

of the gauge-factor in ψ appears the necessity of introducing

the electromagnetic potential. Gauge invariance and charge

conservation. The space-integral of charge. The introduc-

tion of mass. Discussion and rejection of another possibility

in which electromagnetism appears, not as an accompanying

phenomenon of matter, but of gravitation.”



from the Introduction:

“The Dirac field-equations for ψ together with the Maxwell equations

for the four potentials Aµ of the electromagnetic field have an invari-

ance property which is formally similar to the one which I called gauge-

invariance in my 1918 theory of gravitation and electromagnetism; the

equations remain invariant when one makes the simultaneous substi-

tutions [...].”
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“The connection of this “gauge invariance” to the conservation of elec-

tric charge remains untouched. But a fundamental difference, which

is important to obtain agreement with observation, is that the expo-

nent of the factor multiplying ψ is not real but pure imaginary. ψ now

plays the role that Einstein’s ds played before. It seems to me that

this new principle of gauge-invariance, which follows not from specu-

lation but from experiment, tells us that the electromagnetic field is

a necessary accompanying phenomenon, not of gravitation, but of the

material wave-field represented by ψ. Since gauge-invariance involves

an arbitrary function λ it has the character of “general” relativity and

can naturally only be understood in that context.”
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Weyl’s incorporation of the Dirac theory into GR

Weyl’s reaction to Einstein’s recent teleparallel unification attempt,
and remarks by Wigner and others on possible connection with spin
theory of the electron:

“I prefer not to believe in distant parallelism for a number of reasons.

First my mathematical intuition objects to accepting such an artificial

geometry; I find it difficult to understand the force that would keep

the local tetrads at different points and in rotated positions in a rigid

relationship. There are, I believe, two important physical reasons as

well. The loosening of the rigid relationship between the tetrads at

different points converts the gauge-factor eiλ, which remains arbitrary

with respect to ψ, from a constant to an arbitrary function of space-

time. In other words, only through the loosening the rigidity does the

established gauge-invariance become understandable.”
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Tetrad Formalism

tetrad (Vierbein): basis of orthonormal vector fields {eα(x);α =

0,1,2,3}; {eα(x)}: dual basis of 1-forms; metric:

g = ηµνe
µ(x)⊗ eν(x), (ηµν) = diag(1,−1,−1,−1);

invariant under local Lorentz transformations:

eα(x) → Λαβ(x)e
β(x);

connection forms ω = (ωαβ) have values in the Lie algebra of the

homogeneous Lorentz group:

ωαβ + ωβα = 0;

determined (in terms of the tetrad) by the first structure equation

of Cartan:

deα+ ωαβ ∧ eβ = 0.
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Connection forms (gauge potentials of gravity) transform in the

same way as the gauge potential of a non-Abelian gauge theory:

ω(x) → Λ(x)ω(x)Λ−1(x)− dΛ(x)Λ−1(x).

Field strengths = curvature forms Ω = (Ω
µ
ν); obtained from ω in

exactly the same way as the Yang-Mills field strength from the gauge

potential:

Ω = dω+ ω ∧ ω
(second structure equation).

Covariant derivative:

1. for vector field V α:

DV α = dV α+ ωαβV
β;
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2. for Dirac field ψ:

Dψ = dψ+
1

4
ωαβσ

αβψ; σαβ =
1

2
[γα, γβ].

Einstein-Dirac system in massless case:

L =
1

16πG
R− iψ̄γµDµψ.

Weyl discusses the two symmetries:

(i) local Lorentz invariance: ⇒ symmetry of Tµν;

(ii) general coordinate invariance: ⇒ ∇νTµν = 0.
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The New Form of the Gauge-Principle

All this is a kind of a preparation for the final section of Weyl’s
paper, which has the title “electric field”. Weyl says:

“ We come now to the critical part of the theory. In my opinion the

origin and necessity for the electromagnetic field is in the following.

The components ψ1 ψ2 are, in fact, not uniquely determined by the

tetrad but only to the extent that they can still be multiplied by an

arbitrary “gauge-factor” eiλ. The transformation of the ψ induced by a

rotation of the tetrad is determined only up to such a factor. In special

relativity one must regard this gauge-factor as a constant because here

we have only a single point-independent tetrad. Not so in general

relativity; every point has its own tetrad and hence its own arbitrary

gauge-factor; because by the removal of the rigid connection between

tetrads at different points the gauge-factor necessarily becomes an

arbitrary function of position.”
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In this manner Weyl arrives at the gauge-principle in its modern form

and emphasizes: “From the arbitrariness of the gauge-factor in ψ

appears the necessity of introducing the electromagnetic potential.”

The nonintegrable scale factor of the old theory is now replaced by

a phase factor:

exp

(

−
∫

γ
A

)

→ exp

(

−i
∫

γ
A

)

;

corresponds to the replacement of the original gauge group R by

the compact group U(1).

Einstein objection → Aharonov-Bohm effect!
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Current conservation follows again in two independent ways:

1. from gauge inv. + field eqs. for matter;

2. from gauge inv. + field eqs. for elm. field;

corresponds to an identity in the coupled system of field equations

which has to exist as a result of gauge invariance.
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When Pauli saw the full version of Weyl’s paper he became more

friendly and wrote:

“ In contrast to the nasty things I said, the essential part of my last let-

ter has since been overtaken, particularly by your paper in Z. f. Physik.

For this reason I have afterward even regretted that I wrote to you.

After studying your paper I believe that I have really understood what

you wanted to do (this was not the case in respect of the little note in

the Proc.Nat.Acad.). First let me emphasize that side of the matter

concerning which I am in full agreement with you: your incorporation

of spinor theory into gravitational theory. I am as dissatisfied as you

are with distant parallelism and your proposal to let the tetrads rotate

independently at different space-points is a true solution.”
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In brackets Pauli adds:

“ Here I must admit your ability in Physics. Your earlier theory with

g′ik = λgik was pure mathematics and unphysical. Einstein was justified

in criticizing and scolding. Now the hour of your revenge has arrived.”

Then he remarks in connection with the

mass-problem:

“ Your method is valid even for the massive [Dirac] case. I thereby

come to the other side of the matter, namely the unsolved difficulties

of the Dirac theory (two signs of m0) and the question of the 2-

component theory. In my opinion these problems will not be solved by

gravitation . . . the gravitational effects will always be much too small.”
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Earlier, on July 1 (1929), after Pauli had seen a preliminary account

of Weyl’s work, he wrote to him with familiar bluntness:

“ Before me lies the April edition of the Proc.Nat.Acad. (US). Not

only does it contain an article from you under “Physics” but shows

that you are now in a ‘Physical Laboratory’: from what I hear you

have even been given a chair in ‘Physics’ in America. I admire your

courage; since the conclusion is inevitable that you wish to be judged,

not for success in pure mathematics, but for your true but unhappy

love for physics.”
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Weyl on Pauli (1945):

“The mathematicians feel near to Pauli since he is distin-

guished among physicists by his highly developed organ for

mathematics. Even so, he is a physicist; for he has to a high

degree what makes the physicist; the genuine interest in the

experimental facts in all their puzzling complexity. His accu-

rate, instructive estimate of the relative weight of relevant

experimental facts has been an unfailing guide for him in his

theoretical investigations. Pauli combines in an exemplary

way physical insight and mathematical skill.”
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Gauge invariance and quantization (Heisenberg and Pauli, 1928):

Maxwell Lagrangian →

πµ =
∂L

∂(∂0Aµ)
= F0µ, ⇒ π0 ≡ 0, πi = F0i = −Ei;

Gauss constraint ∇ · E = 0 in contradiction with the canonical com-

mutation relations:

[Aj(x), πk(x
′)] = iδ3(x− x

′)δjk.

In fall 1928 Heisenberg proposed to proceed as follows: Add the

term −1
2ε(∂µA

µ)2 to the Lagrangian; π0 = −ε∂µAµ, canonical quan-
tization scheme can be applied; take ε → 0 at the end of all calcu-

lations.

Heisenberg and Pauli II (1930): Lorentz condition cannot be im-
posed as an operator identity but only as a supplementary condition

selecting admissable states. (↔ Fermi, 1929).
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Pauli turned to literature. In a letter of 18 February 1929 he wrote

from Zürich to Oskar Klein:

“For my proper amusement I then made a short sketch of a utopian

novel which was supposed to have the title ‘Gulivers journey to Ura-

nia’ and was intended as a political satire in the style of Swift against

present-day democracy. [...] Caught in such dreams, suddenly in Jan-

uary, news from Heisenberg reached me that he is able, with the aid

of a trick ... to get rid of the formal difficulties that stood against the

execution of our quantum electrodynamics.”
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On Pauli’s invention of non-Abelian
Kaluza-Klein Theory in 1953

There are documents which show that Wolfgang Pauli constructed

in 1953 the first consistent generalization of the five-dimensional

theory of Kaluza, Klein, Fock and others to a higher dimensional

internal space. Because he saw no way to give masses to the gauge

bosons, he refrained from publishing his results formally. This is still

a largely unknown chapter of the early history of non-Abelian gauge

and Kaluza-Klein theories.

37



At the Lorentz-Kammerlingh Onnes conference in Leiden (22-27

June 1953) Pauli asked Pais after his talk:

“...I would like to ask in this connection whether the trans-

formation group with constant phases can be amplified in a

way analogous to the gauge group for electromagnetic po-

tentials in such a way that the meson-nucleon interaction is

connected with the amplified group...”
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Pauli worked on the problem, and wrote on July 25, 1953 a long

technical letter to Pais, with the motto: ”Ad usum Delfini only”.

This letter begins with a personal part in which Pauli says that ”the

whole note for you is of course written in order to drive you fur-

ther into the real virgin-country”. The note has the interesting title:

“Written down July 22-25 1953, in order to see

how it looks. Meson-Nucleon Interaction and

Differential Geometry.”
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Pauli generalizes the original Kaluza-Klein theory to a six-dimensional

space and arrives through dimensional reduction at the essentials of

an SU(2) gauge theory. The extra-dimensions form a two-sphere S2

with space-time dependent metrics on which the SU(2) operates in

a space-time-dependent manner. Pauli emphasizes that this trans-

formation group ”seems to me therefore the natural generalization

of the gauge-group in case of a two-dimensional spherical surface”.

He then develops in ’local language’ the geometry of what we now

call a fibre bundle with a homogeneous space as typical fiber (in this

case SU(2)/U(1)).
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Some Details (in more familiar notation)

• Pauli considers the six-dimensional total space M × S2, where S2

is the two-sphere on which SO(3) acts in the canonical manner. He

distinguishes among the diffeomorphisms (coordinate transforma-

tions) those which leave the space-time manifold M pointwise fixed

and induce space-time-dependent rotations on S2:

(x, y) → [x,R(x) · y]. (3)

• P. postulates metric on M × S2 that is supposed to satisfy three

assumptions → non-Abelian Kaluza-Klein ansatz:
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Metric ĝ on the total space is constructed from a space-time metric

g, the standard metric γ on S2, and a Lie-algebra-valued 1-form,

A = AaTa , A
a = Aaµdx

µ, (4)

on M (Ta, a = 1,2,3: standard generators of the Lie algebra of

SO(3)) as follows: If Ki
a∂/∂y

i are the three Killing fields on S2, then

ĝ = g − γij[dy
i+Ki

a(y)A
a]⊗ [dyj +Kj

a(y)A
a]. (5)

In particular, the non-diagonal metric components are

ĝµi = Aaµ(x)γijK
j
a. (6)

• P. determines the transformation behavior of Aaµ under the group

(1) and finds in matrix notation what he calls ”the generalization

of the gauge group”:

Aµ → R−1AµR+R−1∂µR. (7)
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With the help of Aµ, P. defines a covariant derivative, which is used

to derive ”field strengths” by applying a generalized curl to Aµ. This

is exactly the field strength that was later introduced by Yang and

Mills. To our knowledge, apart from Klein’s 1938 paper, it appears

here for the first time. Pauli says that ”this is the true physical

field, the analog of the field strength” and he formulates what he

considers to be his ”main result”:

The vanishing of the field strength is necessary and sufficient for

the Aaµ(x) in the whole space to be transformable to zero.

• In a second letter P. also studies the dimensionally reduced Dirac

equation and arrives at a mass operator that is closely related to

the Dirac operator in internal space (S2, γ). P. concludes with the

statement: ”So this leads to some rather unphysical shadow parti-

cles”.
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• Mass problem and encounter with Yang

Mass problem was P.’s main concern; emphasized it repeatedly, most

explicitly in second letter to Pais on December 6, 1953, after he had

made some new calculations and had given the two seminar lectures

in Zurich already mentioned. He adds to the Lagrangian what we

now call the Yang-Mills term for the field strengths and says that

”one will always obtain vector mesons with rest-mass zero (and the

rest-mass if at all finite, will always remain zero by all interactions

with nucleons permitting the gauge group).” To this Pauli adds:

”One could try to find other meson fields”, and he mentions, in

particular, the scalar fields which appear in the dimensional reduction

of the higher-dimensional metric. In view of the Higgs mechanism

this is an interesting remark.
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Pauli learned about the related work of Yang and Mills in late Febru-

ary, 1954, during a stay in Princeton, when Yang was invited by

Oppenheimer to return to Princeton and give a seminar on his joint

work with Mills.

Yang:

”Soon after my seminar began, when I had written down on the

blackboard (∂µ− iǫBµ)Ψ, Pauli asked: What is the mass of this field

Bµ?, I said we did not know. Then I resumed my presentation, but

soon Pauli asked the same question again. (...).”
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In a letter to Yang shortly after Yang’s Princeton seminar, Pauli

repeats:

”But I was and still am disgusted and discouraged of the vector

field corresponding to particles with zero rest-mass (I do not take

your excuses for it with ’complications’ seriously) and the difficulty

with the group due to the distinction of the electromagnetic field

remains.”

Formally, Pauli had, however, all important equations, as he shows

in detail, and he concludes the letter with the sentence:

”On the other hand you see, that your equations can easily be

generalized to include the ω-space” (the internal space).
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